Nonconvex Matrix Factorization From Rank-One Measurements
نویسندگان
چکیده
We consider the problem of recovering low-rank matrices from random rank-one measurements, which spans numerous applications including covariance sketching, phase retrieval, quantum state tomography, and learning shallow polynomial neural networks, among others. Our approach is to directly estimate factor by minimizing a nonconvex least-squares loss function via vanilla gradient descent, following tailored spectral initialization. When true rank bounded constant, this algorithm guaranteed converge ground truth (up global ambiguity) with near-optimal sample complexity computational complexity. To best our knowledge, first guarantee that achieves near-optimality in both metrics. In particular, key enabler guarantees an implicit regularization phenomenon: without explicit regularization, initialization descent iterates automatically stay within region incoherent measurement vectors. This feature allows one employ much more aggressive step sizes compared ones suggested prior literature, need splitting.
منابع مشابه
Nonconvex Matrix Factorization from Rank-One Measurements
We consider the problem of recovering low-rank matrices from random rank-one measurements, which spans numerous applications including covariance sketching, phase retrieval, quantum state tomography, and learning shallow polynomial neural networks, among others. Our approach is to directly estimate the low-rank factor by minimizing a nonconvex quadratic loss function via vanilla gradient descen...
متن کاملNonconvex Low Rank Matrix Factorization via Inexact First Order Oracle
We study the low rank matrix factorization problem via nonconvex optimization. Compared with the convex relaxation approach, nonconvex optimization exhibits superior empirical performance for large scale low rank matrix estimation. However, the understanding of its theoretical guarantees is limited. To bridge this gap, we exploit the notion of inexact first order oracle, which naturally appears...
متن کاملLow rank matrix recovery from rank one measurements
We study the recovery of Hermitian low rank matrices X ∈ Cn×n from undersampled measurements via nuclear norm minimization. We consider the particular scenario where the measurements are Frobenius inner products with random rank-one matrices of the form ajaj for some measurement vectors a1, . . . , am, i.e., the measurements are given by yj = tr(Xaja ∗ j ). The case where the matrix X = xx ∗ to...
متن کاملWeighted Rank-One Binary Matrix Factorization
Mining discrete patterns in binary data is important for many data analysis tasks, such as data sampling, compression, and clustering. An example is that replacing individual records with their patterns would greatly reduce data size and simplify subsequent data analysis tasks. As a straightforward approach, rank-one binary matrix approximation has been actively studied recently for mining disc...
متن کاملLow-rank matrix recovery via rank one tight frame measurements
The task of reconstructing a low rank matrix from incomplete linear measurements arises in areas such as machine learning, quantum state tomography and in the phase retrieval problem. In this note, we study the particular setup that the measurements are taken with respect to rank one matrices constructed from the elements of a random tight frame. We consider a convex optimization approach and s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2021
ISSN: ['0018-9448', '1557-9654']
DOI: https://doi.org/10.1109/tit.2021.3050427